USING WEIGHTED SUM METHOD FOR THE CHOICE OF THE NIGHT VISION GOGGLES BATTERY POWER SUPPLY

Daniela Borissova

The paper presents a night vision goggles (NVG) design multicriteria optimization taking into account device working range, weight and price and also electrical battery power supply lifetime, temperature working range and its mechanics. The multicriteria optimization choice of the electrical battery type's and capacity (respectively battery supply lifetime) depends on the image intensifier tube (IIT) choice through its input current. The proposed optimization model is used to formulate multicriteria nonlinear mixed integer problems solved by the weighted sum method to get numerical results. The experimental results show that the proposed optimization model can be used for the IIT and battery power supply choice on the NVG design stage and for some preliminary estimation of the battery power supply lifetime. The optimization model could be modified to satisfy other practical requirements.

INTRODUCTION

Optimization of the engineering systems and in particular of the NVD design needs optimizing of multiple performance criteria. That is because the real-life engineering optimization problems require simultaneous optimization of more than one objective function [1, 2, 3]. In such cases multicriteria mathematical optimization models can be formulated. The majority of engineering systems can achieve an essential raise of their effectiveness using combinatorial optimization. The appropriate optimization methods for the device elements choice [4, 5, 6, 7] are necessary for a preliminary theoretical estimation of the designed device parameters. The device "quality" can be considered as an optimization criterion defined in different ways depending on the user requirements. There exist a number of quality parameters to be used in optimization models of the NVD and amongst them the working ranges (detection, recognition, identification), weight and price are considered as of essential practical importance [5, 6, 7]. Another essential quality parameter from practical point of view is electrical battery power supply lifetime which also influences significantly on the device weight and price. The device power supply lifetime depends on the used electrical battery type and on the IIT input current. A multicriteria optimization model for the electrical battery type's choice depending on the IIT choice can be used on design stage for preliminary estimation of the device electrical battery power supply lifetime, price and weight.

© Инженерни науки, год. XLIV, 2007, №1

16

THE MULTICRITERIA OPTIMIZATION MODEL OF THE NVG INCLUDING ELECTRICAL BATTERY POWER SUPPLY LIFETIME AND MECHANICS

Most realistic optimization problems, particularly those in design, require the simultaneous optimization of more than one objective function. Some of practically recognized NVG quality parameters could be listed as follows [5, 6, 7] working range (detection, recognition or identification), weight and price. From practical point of view another significant parameter is electrical battery power supply lifetime depending on the electrical battery's type and capacity and is mechanics that also reflect on the device weight and price.

As the NVG are powered by batteries, the battery supply lifetime becomes an important design consideration. The electrical battery power supply lifetime L_s depends on the electrical battery capacity C_s and the current demand of the used III as [7, 8] $L_s = C_s/I_{ur}$ [hours].

There exists variety of electrical batteries with different parameters that can be divided on two basic categories depending on their type and supply voltage: AA type batteries with supply voltage 1.5 V and button (coin) cell type with 3.0 V supply voltage. The typical supply voltage needed for the IIT of the NVG is 3.0 V. To increase the device electrical battery power supply capacity and respectively its lifetime it is possible to use a number of parallel connected batteries, i.e. to design a custom electrical battery power supply [7]. The custom electrical battery power supply mechanics influences on the device weight and price, so it is necessary to include it in the optimization model also. The requirement for the bigger electrical battery power supply lifetime reflects on its supporting mechanics – the bigger capacity requires the bigger mechanics to pack chosen electrical batteries.

A generalized optimization problem can be defined as maximizing of the NVG working range while minimizing device weight and price, satisfying some requirements about the electrical battery power supply lifetime and temperature range, taking into account electrical battery power supply mechanics:

$$\max \{R^{d}, -H, -P\},\$$

17

$$R^{d} = \sqrt{\frac{2\tau_{a} E K A_{ob}^{d}}{\pi} K_{HT} K_{ab}} - \text{detection range [9]}$$

$$K_{IIT} = \sum_{i=1}^{m} x_i K_{IIT}^i - \text{IIT quality [4]},$$

9 Инженерни науки, год. XLIV, 2007, №1

© Engineering Sciences, XLIV, 2007, No 1

.

subject to:

$$\sum_{i=1}^{m} x_i = 1, \quad x_i \in \{0, 1\}, \quad - \text{ for single IIT choice,}$$

(5)

(4)

 $K_{IIT}^{i} = \frac{S_{\Sigma}^{i} \delta_{IIT}^{i}}{M^{i} \Phi^{i}_{\min, ph}}$

- quality of the i^{th} IIT,

 S_{Σ} – IIT luminous sensitivity, [A/lm], δ_{ur} – IIT limiting resolution, [lp/mm],

M – IIT signal to noise ratio, $\Phi_{\min,ph}$ – IIT photocathode limiting sensitivity [lm].

Here the parameters of the NVG optical system objective-ocular are considered as known. The objective quality parameter is defined as [4]:

(6) $K_{ob} = D_{in} f_{ob} \tau_o,$

 D_{in} – diameter of the inlet pupil [m], f_{ab} – objective focal length [mm], τ_a – objective transmittance.

A different working range types, for example – orientation, recognition or identification [9] can be used instead (2). The parameters of the external surveillance conditions (τ_a – atmospheric transmittance, E – ambient illumination [1x], K – contrast and A_{ob}^d – reduced target area [m²]) are also known with some determined values.

The custom electrical battery power supply capacity can be provided by choice of different battery types [7]. A relevant battery power supply packing mechanics depending on the chosen battery type and number is needed and its weight and price has to be considered also. The device weight H is calculated as:

(7)
$$H = H_{IIT} + H_{ob} + H_{oc} + H_{g}$$

(8)
$$H_{IIT} = \sum_{i=1}^{m} x_i H_{IIT}^i - \text{IIT weight},$$

 H_{ab} , H_{ac} - objective and ocular weight (fixed), H_{B} - electrical battery power supply and its mechanics weight.

Let us assume that there are *t*-types electrical batteries with different supply voltage 1.5 V or 3 V respectively. Each *t*-type battery could have k_p -subtypes with

© Инженерни науки, год. XLIV, 2007, № 1 18 © Engineering Sciences, XLIV, 2007, No 1

different capacity to choose from, so the electrical battery power supply weight could be defined as:

$$H_{B} = n \left(\sum_{p=1}^{i} a_{p} \left(s_{p} \sum_{q=1}^{k_{p}} b_{q}^{p} H_{B}^{q} + \sum_{p=1}^{i} t_{p} \right) \right),$$

n – number of the parallel connected batteries accordingly to the capacity requirement,

 a_n – binary variable for battery *p*-type,

 b_a^p - binary variable for battery *q*-subtype of *p*-type battery,

 $s_p = \begin{cases} 1 & -\text{ for the 3 V batteries,} \\ 2 & -\text{ for the 1.5 V batteries,} \end{cases}$

 H_{4}^{q} – weight of the *p*-type and *q*-subtype electrical battery,

 L_{5} - single p-type electrical battery power supply mechanics weight.

The single choice of the electrical battery type without combining of the different battery types and subtypes for each $p \in \{1, 2, ..., t\}$ is:

$$\sum_{p=1}^{r} a_p = 1,$$

$$\sum_{p=1}^{l} \left(a_p - \sum_{q=1}^{k_p} b_q^{\nu} \right) = 0 \; .$$

It is practical to have some upper limit H_B^{max} for the electrical battery power supply weight:

$$H_B \leq H_B^{\max}$$
.

Similarly to (6), the device price is expressed as summarized price of its

$$P = P_{HT} + P_{ob} + P_{oc} + P_{B},$$

19

Ивжеверни науки, год. XLIV, 2007, № 1

$$P_{IJT} = \sum_{i=1}^{m} x_i P_{IJT}^i - \text{IIT price},$$

 P_{ob}, P_{oc} - objective and ocular price, P_{B} - electrical battery power supply price. The electrical battery power supply price P_{B} depends on the chosen battery type, on the batteries number n and on the battery supply mechanics also:

(15)
$$P_{B} = n \left(\sum_{p=1}^{t} a_{p} \left(s_{p} \sum_{q=1}^{k_{p}} b_{q}^{p} P_{B}^{q} + \sum_{p=1}^{t} k_{p} \right) \right)$$

 P_{v}^{p} - price of the *p*-type and *q*-subtype electrical battery,

 k_{p} - single *p*-type electrical battery power supply mechanics price. The electrical battery power supply lifetime L_{s} could be expressed as:

$$L_{g} = \frac{C_{B}}{I_{UT}} [7],$$

(14)

where the electrical battery power supply capacity C_n is defined as:

(17)
$$C_{B} = n \sum_{p=1}^{\prime} a_{p} \sum_{q=1}^{k_{p}} b_{q}^{p} C_{B}^{q} , [\text{mAb}],$$

 C_B^q – the capacity of the *p*-type and *q*-suptype battery.

The IIT input current I_{ur} depends on the chosen *i*-type IIT:

(18)
$$I_{III} = \sum_{i=1}^{m} x_i I_{III}^i$$
, [mA]

 I'_{IIT} - the input current of the i^{th} IIT.

The minimum battery supply lifetime $L_{B_{min}}$ defines the constraint:

 $(19) L_{g} \ge L_{Brain}.$

It does not make sense to design a custom electrical battery power supply with lifetime larger than IIT lifetime, so an upper limit for the battery supply lifetime also exist:

© Инженерии науки, год. XLIV, 2007, № 1

20

© Engineering Sciences, XLIV, 2007, No.1

$$L_B \leq L_{IIT}$$

where:

(20)

(21)

22)

10%

23)

$$L_{IJT} = \sum_{i=1}^{m} x_i L_{iT}^i$$
, [hours]

 \vec{E}_{urr} – lifetime of the i^{th} IIT.

The electrical battery power supply is also characterized by its working temperature range and it is good to include the requirements for the electrical batteries temperature working range $(T_B^{low} \div T_B^{high})$ depending on the battery type choice:

$$T_B^{low} \leq T_B^{low \min}$$
 ,

- low battery working temperature boundary,

$$T_B^{high} \geq T_B^{high\max}$$

+ high battery working temperature boundary,

(24)

1751

$$T_{\mathcal{B}}^{low} = \sum_{p=1}^{t} a_p \sum_{q=1}^{\kappa_p} b_q^p T_{\mathcal{B}}^{low_q} ,$$

 l_{g} - low working temperature boundary of the *p*-type and *q*-subtype electrical battery,

$$T_{\beta}^{high} = \sum_{p=1}^{l} a_p \sum_{q=1}^{k_p} b_q^p T_{\beta}^{high_q}$$

 $\frac{1}{8}$ - high working temperature boundary of the *p*-type and *q*-subtype electrical battery.

21

С Ниженерни науки, год. XLIV, 2007, № 1

© Engineering Sciences, XLIV, 2007, No 1

The proposed NVG optimization model allows formulating of the multicriteria nonlinear mixed integer optimization tasks.

MULTICRITERIA OPTIMIZATION PROBLEM SOLVING BY THE WEIGHTED SUM METHOD

The proposed multicriteria optimization task formulation should allow IIT and electrical power battery supply choice for the monocular NVG while providing a maximum standing man detection range on the ambient light condition at $\frac{14}{100}$ moon, minimum of the device price and weight including the electrical battery power supply working temperature range (-30 °C, +30 °C) with minimum lifetime 100 h, i.e.:

(26)
$$\max\{R^{d}, -H, -P\}$$

subject to (2-25) where the used values are:

- the external observing parameters: $\tau_a = 0.7$, E = 0.01 lx (½ moon), K = 0.2, $A_{ab}^d = 0.7$ m²; include the external constant of the external of
- the objective parameters: $K_{ab} = 0.42235$, $H_{ab} = 85$ gr, $P_{ab} = 350$ \$;
- the ocular parameters: $H_{ac} = 65$ gr, $P_{ac} = 300$ \$;
- the electrical battery power supply parameters: $L_{Bmin} = 100 \text{ h}$,

 $T_{E}^{howmin} = -30 \text{ °C}, T_{E}^{highmax} = 30 \text{ °C}.$

The formulated multicriteria nonlinear mixed integer optimization task is solved using the parameters of the 5 different IIT, one fixed pair objective and ocular and 6 battery types shown in *table 1* and *table 2*.

TABLE 1. IIT's parameters

ТАБЛИЦА 1. Параметри на електронно-оптичните преобразуватели

No	IIT	$S_{\Sigma},$ A/Im	δ, lp/mm	M	I _{np} mAh	$\begin{bmatrix} L_{\mu\nu}\\ \mathbf{h} \end{bmatrix}$	$T_{\mu r}$ gr	P _{arr} \$
1	Gen II [10]	0.00045	50	16	16	2000	85	660
2	SHD-3 [10]	0.00060	54	20	- 18	10000	80	1500
3	XD-4 [10]	0.00070	58	24	20	15000	80	2000
4	XR-5 [10]	0.00080	70	28	35	15000	80	5600
5	MX-10160A [11]	0.00180	64	21	40	10000	85	4900

⊙ Инженерни науки, год. XLIV, 2007, № 1.

22

© Engineering Sciences, XLIV, 2007, No I

SAMUEL DEREY'S INFARINCESS TARIBULA 2. Habametria na batebuurte

	Better	Voltage, V	¢", mAh	II ₆ , gr	That S	T_{p}^{las} , $\diamond C$	°., \$
	Vana Longlike (12)	ŝ. e sut	1200	23.0	. 30	- 30-	-1.00^{-1}
14 	GP Super Alkaline [13]	1.5	2500	24.0	35	- 35	1.40
	Energizer Ultimate Lithium [14]	1.5	2900	24.0	35	- 35	4.00
f 1	Renata CR2477N [15]	3.0	950	8.2	35	- 35	-7.00
5	Duracell 2450 Long Life Lithium [16]	3.0	560	6.2	30	- 30	2.50
46	CR2477 Sony Lithium Coin Battery [17]	3.0	1000	10.0	30	30	4.95

The values for the single mechanics weight and price for the electrical battery types 1, 2 and 3 (*table 2*) are respectively 30 gr and 50 \$, for the types 4 and 5 are 20 gr and 25 \$, for types 6 are 15 gr and 20 \$ and are approximate values.

A widely used and popular method for the multiobjective optimization is the weighted sum method. It takes into account the preferences of the decision-maker by using different weights for the different objectives [1, 6]. The method requires normalization of the objective function by solving maximization and minimization single-criterion problems for the each one of the criteria, discarding the rest of mem. The formulated multicriteria problem (26) has maximum and minimum values for each criterion as shown in *table 3*.

TABLE 3. The maximum and minimum values for each criterion ТАБЛИЦА 3. Максимални и минимални стойности за всеки от критериите

	<i>R</i> ", m	H, gr	P.\$
max	551.56	460.60	6806.00
min	319.15	286.40	1374.00

The weighted sum method transforms multiple criteria task to a singleenterior problem defined as a sum of normalized criteria with proper weight coefficients w_i , where $\sum_{i=1}^{3} w_i = 1$ and $0 \le w_i \le 1$. The values from the *table 3* are used to define normalized single objective function for the using of the weighted sum method to solve (25):

23

€ Инженерни науки, год. XLIV, 2007, №1

© Engineering Sciences, XLIV, 2007, No T

(27)
$$\max\left\{w_{1}\frac{R^{d}-R_{\min}^{d}}{R_{\max}^{d}-R_{\min}^{d}}+w_{2}\frac{H_{\max}-H}{H_{\max}-H_{\min}}+w_{3}\frac{P_{\max}-P}{P_{\max}-P_{\min}}\right\}.$$

Four sets of the weight coefficients w, have been chosen as shown in tabl. 4.

		_	and a first state of the second	· / 🎙
set	W ₁	W ₂	w,	
(1)	0.334	0.0333	0.333	
(2)	0.450	0.450	0.100	
(3)	0.100	0.100	0.800	
(4)	0.900	0.050	0.050	

TABLE 4. The used sets of the weight coefficients ТАБЛИЦА 4. Използвани набори от теглови коефициенти

The transformed single criteria problems for the used different sets of the weight coefficients are solved by means of the LINGO software system [18] (LINDO Systems Inc.). The solutions for the each transformed problem are shown in *table 5*.

The results from the *table 5* show the equality of the values of the man detection range, weight and price, for the problems (1) and (3) and for the problems (2) and (4) respectively. The solutions of the problems (1) and (3) are dominated by the price weight coefficients – i.e. 0.333 for the problem (1) and 0.800 for the problem (3), which leads to the cheapest elements combination.

 TABLE 5. Transformed problems solutions results

 ТАБЛИЦА 5. Резулгати от решаването на трансформираните задачи

Device	Problem (1)	Problem (2)	Problem (3)	Problem (4)		
elements	Chosen element					
Chosen IIT (table 1)	1	5	1	5		
Chosen Baitery type (table 2)	4 (2pc)	4 (5pc)	4 (2pc)	4 (5pc)		
Device parameters	1	Calculat	ted value			
Man detection range, m	319.15	551.56	319.15	551.56		
Weight, gr	291.40	376.00	291.40	376.00		
Price, \$	1374.00	6710.00	1374.00	6710.00		
Electrical battery power supply lifetime, h	118.75	118.75	118.75	118.75		

Note: Because of the fact that not all elements have needed values in their data sheets some practically expected values were used and the results in the *tabl.* 5 can be used for some theoretical estimations.

The weight coefficient for the detection range parameter in the problems (2) and (4) are considerably bigger then the price weight coefficients -i.e. 0.450 vs. 4100 and 0.900 vs. 0.050. As a result the price is ignored and the longest detection ranges are determined. Some further numerical experiments will be done to determine the dependability between the weight coefficients relations and the solution results.

As another extension of current work, some other methods for the formulated NVD design multi-criteria problem solving will be used ("E-constraint" method, lexicographical methods, etc.) to evaluate their applicability and efficiency.

CONCLUSION

The obtained results show that the defined multicriteria optimization model taking into account electrical battery power supply lifetime depending on the IIT choice can be used for a preliminary theoretical estimation of the NVG parameters on the design stage. That means decreasing of the device design costs and time as the number of the prototypes to built and test decreases.

The proposed battery power supply for NVG mathematical optimization model could be expanded and modified to estimate other practical requirements on the NVG design stage. For example, the battery power supply packing mechanics depends not only on the batteries type and subtypes but on their mechanics geometrical dimensions. The geometrical dimensions of the chosen IIT could also be taken into consideration for mechanical construction design.

REFERENCES

- H. Marler, R. T., J. S. Arora. Survey of multi-objective optimization methods for engineering. – Structural and Multidisciplinary Optimization, Vol. 26, 2004, No 6, pp. 369–395. 2. Ravindra, V. Tappeta and John E. Renaud. Interactive multiobjective optimization design strategy for decision based design. - Journal of Mechanical Design, Vol. 123, Issue 2, 2001, pp. 205-215.
- Andersson, !. A Survey of multiobjective optimization in engineering design,
- Technical report LiTH-IKP-R-1097, Department of Mechanical Engineering, Linköping
- University, Linköping, Sweden, 2000, 34 pages.
 4. Borissova, D., I. Mustakerov, Anoptimal choice method of the elements for NVG's optoelectronics tract, IIT/WP, 2005, 214B, 9 pages.
 - 5. Borissova, D. Choice of elements for night vision goggle optoelectronic channel. -Engineering Sciences, XLIII, 2006, No 1, pp. 5–16. 6. B o r i s s o v a, D. Multicriteria Choice of the NVG optoelectronic channel elements.
 - Problems of Engineering Cybernetics and Robotics, Vol. 56, 2006, pp. 61-68.
- B o r i s s o v a, D. A single criterion combinatorial optimization model of the monocular night vision goggles battery power supply choice. - Problems of Engineering Cybernetics and Robotics, Vol. 57, 2006 (under print). 8: Park, S., A. Savides, M. Srivastava, Battery capacity measurement and analysis
 - using lithium coin cell battery. Proc. of the Int. Symp. on Low Power Electronics and Design, 2001, pp. 382-387.
 - 9. Borissova, D. Analytical calculation of night vision goggles working range. Cybernetics and Information Technologies, Vol. 5, 2005, No 2, pp. 142-155.

ФИнжеверни науки, год. XLIV, 2007, №1

- 10. Image Intensifiers Tubes, http://www.dep.nl
- 11. Image Intensitiers Tubes, http://ittnv.com
- 12. Varta Longlife AA, http://www.conrad.com
- 13.º GP Super alkaline AA 1:5 V 2500 mAh, http://www.conrad.com
- 14. Energizer Lithium 740090-AA,
 - http://www.batterycountry.com/ShopSite/alkaline-batteries.html
- Renata CR2477N battery, http://www.battery-force.co.uk/detail_RACR24001C.html
 Duracell 2450 Long Life Lithium,
- http://www.batterycountry.com/ShopSite/coin-cell-batteries.html 17. Technical Specifications: SONY Lithium Coin Cell Batteries, http://www.microbattery.com/tech-sony-lithium.htm
- 18. LINDO Systems Inc., http://www.lindo.com

ИЗПОЛЗВАНЕ МЕТОДА НА ПРЕТЕГЛЕНАТА СУМА ЗА ИЗБОР НА БАТЕРИЙНО ЗАХРАНВАНЕ ЗА ОЧИЛА ЗА НОЩНО ВИЖДАНЕ

Д.Борисова

Резюме

Формулиран с оптимизационен модел на очила за нощно виждане (OHB), вземащ предвид разстоянието на действие, теглото и цената, както и времето на непрекъсната работа на батерийното захранване, работния му температурен диапазон и типа на конструкцията му. Изборът на тип и капацитет на батерийного захранване е свързан с избора на електроннооптичен преобразувател (EOII) чрез тока на консумацията му. Онтимизационният модел е използван за формулиране на многокритернална нелинейна смессно-целочислена оптимизационна задача, решавана по метода на претеглената сума. Числените резултати показват, че предложения модел може да бъде използван за избор на EOII и батерийно захранване на етапа на проектиране за получаване на теоретична оценка за времето на непрекъсната работа на ОНВ, за теглото и цената на избраните слементи. Предложеният оптимизационен модел може да бъде модифициран и допълван и за други практически изисквания:

Постъпила на 20.09.2006 г.

Даниела Борисова, н. с. 1 ст. Институт по информационни технологии – БАН, ул. "Акад. Г. Бончев", бл. 2 1113 – София e-mail: danbor(wiit, bas.bg Daniela Borissova, Research Associate Institute of Information Technologies – Bulgarian Academy of Sciences, Acad. G. Bonchev, St., Bl. 2, 1113 – Sofia e-mail: danbor(ajit.bus.hg

© Инженерни науки, год. XLIV, 2007, №1

26